Es necesaria una nomenclatura que distinga los estereoisómeros de una molécula. Así, en el caso del 2-Clorobutano la notación debe distinguir un enantiómero del otro. Cahn, Ingold y Prelog desarrollaron unas reglas que permiten distinguir unos estereoisómeros de otros, y que a continuación describo.

Regla 1.- Dar prioridades a cada uno de los cuatro átomos o grupos de átomos enlazados directamente al carbono asimétrico. Esta prioridad se da por número atómico. En la molécula de Bromocloroyodometano, el yodo es el grupo de mayor prioridad, que representamos por “a” y el hidrógeno el de menor prioridad, que respresentamos por “d”. 

Asignar prioridades

Regla 2.- Orientar la molécula con el grupo de menor prioridad hacia el fondo del papel. En el ejemplo anterior el grupo de menor prioridad es el hidrógeno (grupo d) y está como puede verse en la figura al fondo del papel (línea discontinua). Ahora dibujamos una flecha que recorre los grupos en orden a → b → c. Si el recorrido es en el sentido de las agujas del reloj, el carbono asimétrico tiene notación R. Si el recorrido es en sentido contrario la configuración del carbono es S.

Configuración absoluta: pareja de enantiómeros

Notación R/S de molécula e imagen
Obsérvese que si un enantiómero tiene notación R su imagen especular será S.

Configuración absoluta de una molécula y de su imagen especular

Notación R/S con grupo "d" en cuña
En los ejemplos anteriores el grupo d siempre queda por detrás del plano formado por los tres sustituyentes de más prioridad. Si el grupo d está hacia nosotros (cuña) la configuración del carbono es contraria al giro. Veamos un ejemplo:

Configuración absoluta con el grupo

En este caso el grupo de menor prioridad está orientado hacia nosotros. Se dan prioridades, pero la notación del centro quiral es contraria al giro. Así, giramos en el sentido de las agujas del reloj, pero la notación es S.

 

Notación R/S con grupo de en el plano
¿Cómo damos la configuración absoluta de un centro quiral que tiene el grupo de menos prioridad en el plano? Una solución es girar la molécula para dejar “d” al fondo. Pero también podemos usar un “truco” que permite conocer de forma sencilla la configuración absoluta de un centro quiral. Esta idea se basa en cambiar el grupo d por el grupo que va al fondo. Un cambio de dos grupos supone cambiar la notación del centro quiral.

Configuración absoluta con grupo

El cambio del hidrógeno por el yodo cambia la notación de la molécula. Después de hacer el cambio el centro quiral tiene notación S. Por tanto, la molécula de partida será R.