Synthesis of chiral and achiral analogues of ambroxol via palladiumcatalysed reactions

A nna L. E. L arsson, Roberto G. P. G atti and J an-E . Bäckvall*
Department of Organic C hemistry, U niversity of U ppsala, Box 531, S-751 21 U ppsala, Sweden

C hiral cis- and trans-4-aminocyclohex-2-enols and achiral 4-aminocyclohexanols, which all are analogues of ambroxol, are prepared via stereoselective allylic substitution of cyclohex-2-ene-1,4-diol derivatives or 1-acetoxy-4-chlorocyclohex-2-ene. The chiral target molecules are obtained in enantiomerically pure form by employing a previously described enantiodivergent synthesis of cis- and trans-4-aminocyclohex-2enols. It has been found that bis(amine) nucleophiles 7 a and 7 b react only at the benzylic amino group under the conditions employed.

Introduction

Bromhexine $\mathbf{1}$ and its active metabolite ambroxol (trans-2b) have been used clinically for various respiratory problems. ${ }^{1,2}$

1

trans-2b

A mbroxol has been shown to be effective in ameliorating respiratory symptoms associated with cystic fibrosis, silicosis, chronic bronchitis and other pulmonary disorders. ${ }^{1}$ It has also been shown to exhibit anti-inflammatory properties. ${ }^{2} \mathrm{H}$ owever, to the best of our knowledge, the mechanism of its pharmacological effect is still not known. For the purpose of some further investigation of this problem, some optically active, as well as achiral analogues of these compounds were prepared for further pharmacological evaluation. ${ }^{3}$

In general 1,4 -amino alcohols are common structural elements in a number of biologically active compounds. ${ }^{4,5}$ For example, some carbocyclic nucleosides ${ }^{4}$ possess antiviral and antitumour activity. A group of antibacterial agents are valienamine and analogues. ${ }^{5}$

We recently reported methodology for the enantiodivergent synthesis of cis- and trans-4-aminocyclohex-2-enols using (1R , 4S)-(-)-cis-4-acetoxycyclohex-2-enol (-)-6 as the enantiopure precursor. ${ }^{6,7}$ H erein we report on the application of this methodology to the synthesis of some analogues of ambroxol.

Results and discussion

A mbroxol (trans-2b) as well as its analogues trans-2a, cis-2, $\mathbf{3}$ and $\mathbf{4}$ were the target molecules for this study. The procedure is based upon the previously described desymmetrisation ${ }^{6,8,9}$ of 1,4-diacetoxycyclohex-2-ene ${ }^{10} 5$ to (1R,4S)-(-)-cis-4-acetoxy-cyclohex-2-enol (-)-6 (Scheme 1) followed by selective palladium-catalysed allylic nucleophilic substitution. ${ }^{6,8}$ With its two differentiated allylic sites, (-)-6 is a suitable precursor for further functionalisation. M anipulation of the relative reactivity of the two allylic oxygen moieties towards palladium(0)-catalysed allylic amination allows for the synthesis of all four possible stereoisomers of 4-aminocyclohex-2enol.

($1 S, 4 R$)-(+)-3

$(1 S, 4 S)-(-)-\mathbf{4}$

cis-2

Scheme 1

The leaving groups employed in the allylic substrates were 2,4-dichlorobenzoate and chloride. The amines used for the preparation of the ambroxol analogues were 2 -aminobenzylamine 7 a and 2 -amino-3,5-dibromobenzylamine $\mathbf{7 b}$.

7a $\mathrm{R}=\mathrm{H}$
$7 \mathrm{~b} \mathrm{R}=\mathrm{Br}$

These amine nucleophiles contain two amine functionalities, one benzylic and one aromatic primary amine. For an efficient synthesis a selective reaction of the benzylic amine site without prior protection of the aromatic amine was desirable. We found that with 1-3 equiv. of 7 a or $\mathbf{7 b}$ and $5 \mathrm{~mol} \%$ of Pd -catalyst the allylic substrates $\mathbf{8}, \mathbf{1 0}$ and $\mathbf{1 2}$ afforded the desired amino alcohol derivatives with 99% selectivity. The synthesis of the target molecules (1S,4R)-3, (1R , 4S)-3, (1S, 4S)-4 and (1R ,4R)-4 from $(-)-6$ are summarised in Schemes 2 and 3.

Scheme 2 Synthesis of the cis enantiomers

Scheme 3 Synthesis of the trans enantiomers
The allylic substrates 8 and 10 obtained according to reference 6 were allowed to react with the appropriate 2 -aminobenzylamine ($\mathbf{7 a}$ or $\mathbf{7 b}$) in the presence of the palladium catalyst $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right.$ and $\left.\mathrm{PPh}_{3}\right]$. A fter hydrolysis or deprotection the target amines $\mathbf{3 a}$ and $\mathbf{3 b}$ were obtained in enantiomerically pure form (ee $\geqslant 98 \%$).
The corresponding trans isomers were prepared in an analogous palladium-catalysed amination of trans-chloroacetates ($1 \mathrm{~S}, 4 \mathrm{~S}$) - $\mathbf{1 2}$ and ($1 \mathrm{R}, 4 \mathrm{R}$)-12 employing amines 7a and $\mathbf{7 b}$. These chloroacetates were obtained in enantiomerically pure form as described earlier. ${ }^{6}$ Subsequent hydrolysis of 13a or 13b gave in each case the enantiomerically pure target molecules $\mathbf{4 a}$ and $\mathbf{4 b}$. The enantiomeric purity of the products was in each case determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy utilising the magnetic
non-equivalence in the diastereomeric salt formed with the amine and (S)-(+)-mandelic acid.

For the synthesis of achiral compounds cis-2 and trans-2 a more expedient route via the chloroacetate 14 was chosen. The latter compound is readily obtained from cyclohexa-1,3-diene. ${ }^{11}$ A number of cis- and trans-1,4-disubstituted cyclohex-2-enes are accessible by stereoselective substitution of the allylic leaving groups in $14 .{ }^{11,12} \mathrm{~A}$ palladium catalysed reaction of 14 with amines $\mathbf{7 a}$ or $\mathbf{7 b}$ afforded the cis isomers 9 a and 9 b , respectively (Scheme 4). The corresponding non-catalysed substitution gave

Scheme 4 Synthesis of the achiral analogues cis-2 and trans-2
the trans isomers 13a and $\mathbf{1 3 b}$. The latter $\mathrm{S}_{\mathrm{N}} 2$ reaction was slow and gave at best 37% of $\mathbf{1 3}$ ($>96 \%$ trans) in $\mathrm{CH}_{3} \mathrm{CN}$ at $80^{\circ} \mathrm{C}$. A prolonged reaction time gave a higher yield but with lower stereoselectivity. Compound $\mathbf{1 3}$ was therefore prepared from racemic $\mathbf{1 2}$ using the same pathway as in Scheme 3. Subsequent hydrolysis and hydrogenation of 9 and 13 afforded the target amino alcohols cis-2 and trans-2, respectively.

Conclusion

A mbroxol analogues have been synthesised via palladium(0)catalysed allylic amination. With this method unsaturated analogues $\mathbf{3}$ and $\mathbf{4}$ were obtained in enantiomerically pure form. A Iso saturated achiral analogues trans-2a, cis-2 and ambroxol itself (trans-2b) were prepared employing this methodology.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M \mathrm{R}$ spectra were recorded for CDCl_{3} solutions at 300 or 400 and 75.4 or 100.6 M Hz , respectively. Chemical shifts are reported in ppm with CDCl_{3} as the internal standard (7.26 for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$), and coupling constants (J) are given in Hz . A ssignments of the NM R signals were done using ${ }^{1} \mathrm{H}$-homodecoupling, COSY, NOESY, selective INEPT and HETCOR experiments. Mass spectra were recorded with pneumatically assisted electrospray mass spectrometry (ESMS) on a Micromass VG Platform apparatus using a direct inlet of a solution in methanol or via separation on an LCcolumn (K romasil C18 $100 \times 4.6 \mathrm{~mm}$, acetonitrile-water gradient with 5 mm trifluoroacetic acid). Optical rotations (given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$) were measured at $25.0^{\circ} \mathrm{C}$ on a Perkin-Elmer 241 polarimeter and concentrations are expressed as g per 100 ml in spectroscopically pure ethanol or methylene chloride. Bis(dibenzylideneacetone)palladium(0) $\quad\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was prepared according to literature procedures. ${ }^{13}$ THF was
distilled under nitrogen from sodium benzophenone ketyl Triethylamine was distilled from KOH and stored over KOH under nitrogen until used. Thin layer chromatography (TLC) was run on M erck precoated silica gel $60 \mathrm{~F}_{254}$ plates. All reactions were carried out in oven dried glassware and the Pd^{0} catalysed reactions also under an argon or nitrogen atmosphere. The progress of reactions was followed by TLC until judged complete for all reactions. For flash chromatography M erck K ieselgel 60 (230-400 mesh) was used. Enantiomeric excess (ee) of the amines was checked with ${ }^{1} \mathrm{H}$ N M R spectroscopy in CDCl_{3} by salt formation with optically pure (S)-(+)mandelic acid. N ormally about 10 mg of the amine was mixed with 1-2 equiv. of mandelic acid in 0.7 ml of solvent which gave excellent separation of the diastereomeric salts. (U sing more material causes solubility problems which can be helped with a few drops of $\mathrm{CD}_{3} \mathrm{OD}$, as long as the same conditions are used for the sample as for the reference/racemate.)

(\pm)-cis-1-A cetoxy-4-(2-aminobenzylamino)cyclohex-2-ene 9a

To a solution that had been stirred at room temp. for 20 min containing $\mathrm{Pd}(\mathrm{dba})_{2}(86 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{PPh}_{3}(113 \mathrm{mg}, 0.43$ mmol), 2-aminobenzylamine ($420 \mathrm{mg}, 3.43 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(1.04 \mathrm{~g}, 10.3 \mathrm{mmol})$ in TH F (15 ml) was added cis-chloroacetate $14(500 \mathrm{mg}, 2.86 \mathrm{mmol})$ in THF (10 ml). The reaction mixture was stirred at room temp. for 40 h . The solvent was evaporated and the residue was dissolved in diethyl ether (20 ml) and extracted with 1 m aq. $\mathrm{HCl}(3 \times 50 \mathrm{ml})$. To the aqueous phase was added fresh diethyl ether (80 ml) and the pH was adjusted to >10 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KOH under stirring. The organic phase was collected and the aqueous phase was further extracted with diethyl ether (50 ml). The combined ethereal extracts weredried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated. The crude product was purified on silica (ethyl acetate-pentane gradient) to give 9a (540 mg , $73 \%)$. The silica was first conditioned with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in pentane. $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.55-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.74-1.95(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.06\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 3.10-3.19(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN})$, 3.88, 3.91 ($2 \mathrm{H}, \mathrm{A}$ B-system, J AB 12.5, ArCH 2 N), 4.4-5.0 (1 H , br s, NH), 5.16-5.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OA C), 5.80 (1 H, dddd, J 10.1 , 3.9, 1.9 and 0.7 , olefinic $\mathrm{CH}-2), 6.01(1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 10.0$ and 2.8 , olefinic CH-3), 6.68 ($1 \mathrm{H}, \mathrm{ddm}$, J 7.8 and 1.2, ArH-3), 6.70 (1 H, ddd, J 7.4, 7.4 and 1.2, ArH-5), 7.04 (1 H , dm, J 7.4, ArH-6), 7.11 (1 H , ddd, J 7.8, 7.4 and 1.6, $\mathrm{ArH}-4$); $\delta_{\mathrm{c}}(75.4 \mathrm{M} \mathrm{H} \mathrm{z;} \mathrm{CDCl} 3$, 15 peaks) $21.3\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 25.1\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 26.0\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$, $50.2\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 52.0(\mathrm{CHN}), 67.2(\mathrm{CHO})$, $115.7(\mathrm{Ar}, \mathrm{CH}-3)$, 117.6 ($\mathrm{Ar}, \mathrm{CH}-5$), 123.7 ($\mathrm{Ar}, \mathrm{C}-1$), 126.4 (olefinic CH-2), 128.3 (Ar, CH-4), 129.7 (Ar, CH-6), 135.2 (olefinic CH-3), 146.9 (Ar, $\left.\mathrm{C}\left(\mathrm{NH}_{2}\right)-2\right], 170.6(\mathrm{C}=0) ; \mathrm{m} / \mathrm{z} 283$ ($\left[\mathrm{M}+\mathrm{Na}^{+}{ }^{+}, 4 \%\right), 262$ $\left([\mathrm{M}+2 \mathrm{H}]^{+}, 15\right), 261\left([\mathrm{M}+\mathrm{H}]^{+}, 81\right), 107(8), 106$ (100).

(1S,4R)-(-)-cis-1-A cetoxy-4-(2-aminobenzylamino)cyclohex-2ene ($15,4 \mathrm{R}$)-(-)-9a

This compound was synthesised as for the preparation of (\pm)9a but with the use of allylic substrate ($1 \mathrm{R}, 4 \mathrm{~S}$) - (+)-8 (251 mg , $0.76 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(23 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{PPh}_{3}(30 \mathrm{mg}, 0.12$ mmol), 2-aminobenzylamine ($112 \mathrm{mg}, 0.92 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($303 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF (6 ml) for 18 h to give 143 mg (72%) of the title compound. Spectral data were in accordance with those for (\pm)-9a; $[a]_{D}^{25}-45$ (c 2.10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(\pm)-cis-4-(2-A minobenzylamino)cyclohex-2-enol 3a

Compound (\pm)-9a ($400 \mathrm{mg}, 1.54 \mathrm{mmol}$) was stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($220 \mathrm{mg}, 1.60 \mathrm{mmol}$) in methanol (4 ml) and water (1 ml) at room temp. A fter 6 h the M eOH was evaporated and the mixture was diluted in diethyl ether (100 ml) and washed with water (10 ml) and brine (10 ml). Drying ($\mathrm{K}_{2} \mathrm{CO}_{3}$), evaporation and purification on silica (gradient of diethyl ether-pentane 60:40 to ethyl acetate- $\mathrm{MeOH} 90: 10$ with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) gave the title compound (\pm)-3a ($322 \mathrm{mg}, 96 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) $1.58-$ $1.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70-1.88\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.07-3.14(1 \mathrm{H}, \mathrm{m}$, CHN) , 3.84, $3.89\left(2 \mathrm{H}, \mathrm{AB}\right.$-system, J $\mathrm{J}_{\mathrm{AB}} 12.5, \mathrm{ArCH}_{2} \mathrm{~N}$), 4.12-
$4.19(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.81(1 \mathrm{H}$, ddd, J 10.1, 3.4 and 1.6 , olefinic CH-2), 5.87 ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 10.1$ and 2.8 , olefinic $\mathrm{CH}-3$), 6.65 ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 7.8$ and 1.2, A rH-3), 6.68 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.4,7.4$ and 1.2, ArH-5), 7.02 ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 7.4$ and 1.6, ArH-6), 7.09 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.8,7.4$ and $1.6, \mathrm{ArH}-4$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 13\right.$ peaks) $24.8\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 50.2\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 52.1(\mathrm{CHN})$, 64.9 (CHOH), 115.8 (Ar, CH-3), 117.8 (Ar, CH-5), 123.7 (Ar, $\mathrm{C}-1$), 128.5 ($\mathrm{Ar}, \mathrm{CH}-4$), 129.9 ($\mathrm{Ar}, \mathrm{CH}-6$), 130.9 (olefinic $\mathrm{CH}-2$), 132.8 (olefinic CH-3), $146.9\left[\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)\right.$-2]; m/z 241 ($[\mathrm{M}+$ $\left.\mathrm{Na}]^{+}, 2 \%\right), 219\left([\mathrm{M}+\mathrm{H}]^{+}, 11\right), 107(9), 106$ (100).

(1S,4R)-(+)-cis-4-(2-A minobenzylamino)cyclohex-2-enol ($1 \mathrm{~S}, 4 \mathrm{R}$)-(+)-3a

This compound was prepared in accordance with (\pm)-3a but with ($15,4 R$)-9a as the starting material. Y ield and spectral data were in accordance with those for (\pm)-3a; $[a]_{D}^{25}+0.9$ (c 1.26 in EtOH); ee $\geqslant 98 \%$.

(1R,4S)-(-)-cis-4-(2-A minobenzylamino)cyclohex-2-enol (1R,4S)-(-)-3a

The same procedure as for the preparation of (\pm)-9a was followed, but with the use of allylic substrate ($15,4 \mathrm{R}$)-10 $(400 \mathrm{mg}$, $1.08 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(33 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{PPh}_{3}(36 \mathrm{mg}, 0.14$ mmol), 2-aminobenzylamine ($132 \mathrm{mg}, 1.08 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($244 \mathrm{mg}, 2.4 \mathrm{mmol}$) in THF (10 ml) for 18 h to give ($1 \mathrm{R}, 4 \mathrm{~S}$)-10a ($140 \mathrm{mg}, 40 \%$). The TH P group in the latter product (140 mg , 0.43 mmol) was removed with toluene-p-sulfonic acid (95 mg , 0.50 mmol) in MeOH (5 ml) at room temp. A fter 12 h the M eOH was evaporated and diethyl ether (100 ml) and 1 m NaOH (10 ml) were added and after extraction the organic phase was washed with water (10 ml) and brine (10 ml). D rying ($\mathrm{M} \mathrm{SO}_{4}$), evaporation and purification on silica (gradient of diethyl ether-pentane 60:40 to ethyl acetate-M $\mathrm{COH} 90: 10$ with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) gave the title compound ($1 \mathrm{R}, 4 \mathrm{~S}$)-3a ($75 \mathrm{mg}, 80 \%$, 32% over two steps). Spectral data were in accordance with those for (\pm)-3a; [$\alpha]_{D}^{25}-1.0$ (c 0.93 in EtOH); ee $\geqslant 98 \%$.

(\pm)-cis-1-A cetoxy-4-(2-amino-3,5-dibromobenzylamino)-cyclohex-2-ene 9b

The procedure for the preparation of (\pm)-9a was followed. Allylic substrate 14 ($500 \mathrm{mg}, 2.86 \mathrm{mmol}$) was reacted with $\mathrm{Pd}(\mathrm{dba})_{2}(86 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{PPh}_{3}(113 \mathrm{mg}, 0.43 \mathrm{mmol}), 2-$ amino-3,5-dibromobenzylamine ($960 \mathrm{mg}, 3.43 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.04 \mathrm{~g}, 10.3 \mathrm{mmol}$) in THF (25 ml). The reaction mixture was stirred at room temp. for 12 h . Y ield: $729 \mathrm{mg}(61 \%) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(1 \mathrm{H}\right.$, br s, NH), $1.52-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.74-1.98(3H, m, CH 2), 2.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}$), 3.03-3.15(1 H, m, CHN), 3.84, 3.87 ($2 \mathrm{H}, \mathrm{AB}$-system, J $\mathrm{AB}^{2} 12.8, \mathrm{ArCH}_{2} \mathrm{~N}$), 5.14-5.27 (1 H , m, CH OA c), 5.35 (2 H , br s, ArN H 2), $5.79(1 \mathrm{H}$, ddd, J 10.1, 3.8 and 1.8, olefinic CH-2), $5.95(1 \mathrm{H}$, dd, J 10.1 and 2.6, olefinic CH-3), $7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.9, \mathrm{ArH}-6), 7.48(1 \mathrm{H}, \mathrm{d}$, J 2.0, $\mathrm{ArH}-4$); $\delta_{\mathrm{c}}\left(75.4 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 15\right.$ peaks) $21.3\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]$, $25.0\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 25.9\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 50.1\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 51.8$ (CHN), 67.0 (CHO), 108.2 [Ar, C(Br)-5], 110.4 [$\mathrm{Ar}, \mathrm{C}(\mathrm{Br})-3]$, 126.0 (A r, C-1), 126.9 (olefinic CH-2), 131.4 (A r, CH-6), 133.3 (Ar, CH-4), 134.6 (olefinic CH-3), 143.9 [$\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)$-2], 170.6 ($\mathrm{C}=0$); m/z $422\left([\mathrm{M}+2 \mathrm{H}]^{+}, 7 \%\right), 421\left([\mathrm{M}+\mathrm{H}]^{+}, 43\right), 419([\mathrm{M}$ $\left.+\mathrm{H}^{+}, 100\right), 417$ ([M + H] $\left.{ }^{+}, 45\right), 266$ (4), 264 (8), 262 (4), 159 (18), 156 (54), 139 (24), 74 (60), 64 (40).

(1S,4R)-cis-1-A cetoxy-4-(2-amino-3,5-dibromobenzylamino)-cyclohex-2-ene ($15,4 R$)-9b

The procedure for the preparation of (\pm)-9a was followed. Allylic substrate ($1 \mathrm{R}, 4 \mathrm{~S}$)-8 ($235 \mathrm{mg}, 0.71 \mathrm{mmol}$) was reacted with $\operatorname{Pd}(\mathrm{dba})_{2}$ ($21 \mathrm{mg}, 0.035 \mathrm{mmol}$), $\mathrm{PPh}_{3}(28 \mathrm{mg}, 0.11 \mathrm{mmol})$, 2-amino-3,5-dibromobenzylamine- 2 H Br ($376 \mathrm{mg}, 0.85 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($804 \mathrm{mg}, 7.9 \mathrm{mmol}$) in THF (6 ml). The reaction mixture was stirred at room temp. for 18 h . Yield: 179 mg (60%). Spectral data were in accordance with those for (\pm)-9b; ee $\geqslant 98 \%$.
(\pm)-cis-4-(2-A mino-3,5-dibromobenzylamino)cyclohex-2-enol 3b Compound (\pm)-3b was prepared in accordance with (\pm)-3a but with (\pm)-9b as the starting material; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{H} \mathrm{z;} \mathrm{CDCl} 3) 1.39-$ $1.84\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{OH}, \mathrm{NH}\right), 2.97-3.14(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 3.81$, 3.85 ($2 \mathrm{H}, \mathrm{AB}$-system, J ав $12.8, \mathrm{ArCH}_{2} \mathrm{~N}$), 4.08-4.23 ($1 \mathrm{H}, \mathrm{m}$, CHO), $5.34(2 \mathrm{H}$, br s, ArNH 2$), 5.78-5.85(2 \mathrm{H}, \mathrm{m}$, olefinic), 7.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2$, ArH-6), 7.47 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2, \mathrm{ArH}-4$); $\delta_{c}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 13\right.$ peaks) $24.7\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 50.2$ ($\mathrm{ArCH}_{2} \mathrm{~N}$), $51.8(\mathrm{CHN}), 64.8(\mathrm{CH} 0), 108.3$ (Ar, C(Br)-5], 110.4 [Ar, C(Br)-3], 126.2 (A r, C-1), 131.2 ($\mathrm{Ar}, \mathrm{CH}-6$), 131.4 (olefinic), 132.3 (olefinic), 133.3 ($\mathrm{Ar}, \mathrm{CH}-4$), 143.9 [$\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)-2$]; m/z $380\left([\mathrm{M} \mathrm{+} \mathrm{2H}]^{+}, 6 \%\right), 379$ ([M + H] $\left.{ }^{+}, 36\right), 377$ ([M + H] ${ }^{+}, 70$), 375 ([M + H] ${ }^{+}, 39$), 266 (21), 264 (38), 262 (22), 114 (100).
(1S,4R)-(+)-cis-4-(2-A mino-3,5-dibromobenzylamino)cyclohex-2-enol (1S,4R)-(+)-3b
Compound (1S, 4R)-(+)-3b was prepared in accordance with (\pm)-3a but with ($15,4 \mathrm{R}$)-9b as the starting material. Spectral data were in accordance with those for (\pm)-3b; $[a]_{D}^{25}+4.9$ (c 1.34 in EtOH); ee $\geqslant 98 \%$.
(1R,4S)-(-)-cis-4-(2-A mino-3,5-dibromobenzylamino)cyclohex-2-enol (1R,4S)-(-)-3b
The same procedure was used as for the preparation of (1R,4S)-3a. Y ield: 30\% over two steps; [$a]_{D}^{25}-4.6$ (c 1.03 in EtOH); ee $\geqslant 98 \%$.

cis-4-(2-A minobenzylamino)cyclohexanol cis-2a

(\pm)-cis-4-(2-A minobenzylamino)cyclohex-2-enol (\pm)-3a (200 $\mathrm{mg}, 0.916 \mathrm{mmol})$ and $\mathrm{PtO}_{2}(7 \mathrm{mg}, 0.031 \mathrm{mmol})$ were mixed in $\mathrm{EtOH}(20 \mathrm{ml})$ under nitrogen. The atmosphere was changed to hydrogen, 1 atm (balloon), and the reaction was stirred at room temp. for 25 min . The mixture was filtered on silica and Celite, the solvent was evaporated and the residue was separated on silica ($\mathrm{EtOAc}-\mathrm{Et}_{3} \mathrm{~N} 98: 2$) to give the title compound (334 mg , $81 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10-1.80(10 \mathrm{H}, \mathrm{m}$ and br s , $\left.4 \times \mathrm{CH}_{2}, \mathrm{OH}, \mathrm{NH}\right), 2.56-2.66(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 3.80(2 \mathrm{H}, \mathrm{s}$, NHCH 2 Ar), 3.81-3.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), $6.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.8$ and 1.2, ArH-3), $6.68(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.4,7.4$ and 1.2, $\mathrm{ArH}-5), 7.03$ ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 7.4$ and 1.6, ArH-6), 7.08 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.8,7.4$ and 1.6, $\mathrm{ArH}-4) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 11\right.$ peaks) $27.8\left(\mathrm{CH}_{2}-3\right)$, $31.1\left(\mathrm{CH}_{2}-2\right), 50.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 54.1(\mathrm{CHN}), 67.4(\mathrm{CHOH})$, 115.7 ($\mathrm{Ar}, \mathrm{CH}-3$), 117.7 ($\mathrm{Ar}, \mathrm{CH}-5$), 124.6 ($\mathrm{Ar}, \mathrm{C}-1$), 128.2 (Ar , CH-4), 129.6 (Ar, CH-6), $146.8\left[\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)-2\right] ; \mathrm{m} / \mathrm{z} 222$ ([M + $\left.2 \mathrm{H}]^{+}, 21 \%\right), 221\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 106(70), 82(45)$.

cis-4-(2-A mino-3,5-dibromobenzylamino)cyclohexanol cis-2b

The same procedure as described for the preparation of cis-2a was used. Compound (\pm)-3b ($64 \mathrm{mg}, 0.170 \mathrm{mmol}$) and $\mathrm{PtO}_{2}(1.4$ $\mathrm{mg}, 0.006 \mathrm{mmol}$) in EtOH (10 ml) was stirred for 1.5 h under 1 atm of H_{2} at room temp. to yield the title compound (52 mg , 81%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.24-1.94\left(10 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}, \mathrm{OH}\right.$, NH), 2.45-2.66 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), $3.79\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), 3.84-3.94 (1 H, m, CHOH), $5.30(2 \mathrm{H}, \mathrm{br} \mathrm{s} \mathrm{ArNH} 2),, 7.09(1 \mathrm{H}$, d, J 2.3, ArH-6), 7.47 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{ArH}-4$); $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3}, 11$ peaks) $27.7\left(\mathrm{CH}_{2}-3\right)$, $31.1\left(\mathrm{CH}_{2}-2\right), 50.4\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$, 54.1 (CHN) , $67.1(\mathrm{CHOH}), 108.2$ [$\mathrm{Ar}, \mathrm{C}(\mathrm{Br})-5], 110.3$ [Ar , C(Br)-3], 126.8 (Ar, C-1), 131.3 (Ar, CH-6), 133.1 (Ar, CH-4), $144.0\left[\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)-2\right] ; \mathrm{m} / \mathrm{z} 381\left([\mathrm{M}+\mathrm{H}]^{+}, 40 \%\right), 379\left(\left[\mathrm{M}+\mathrm{H}^{+}\right.\right.$, 80), 377 ([M + H] ${ }^{+}, 42$), 266 (10), 264 (21), 262 (10), 116 (100).
(\pm)-trans-1-A cetoxy-4-(2-aminobenzylamino)cyclohex-2-ene 13a The procedure for the preparation of (\pm)-9a was followed. A llylic substrate $(\pm)-12(148 \mathrm{mg}, 0.85 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(25 \mathrm{mg}$, $0.04 \mathrm{mmol}), \mathrm{PPh}_{3}(44 \mathrm{mg}, 0.17 \mathrm{mmol}), \mathrm{LiCl}(8.5 \mathrm{mg}, 0.20$ mmol) and 2-aminobenzylamine ($312 \mathrm{mg}, 2.55 \mathrm{mmol}$) in THF $(8 \mathrm{ml})$ were stirred at room temp. for 15 h . Y ield: $258 \mathrm{mg}(76 \%)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.41-1.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}\right), 1.54-1.68$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{O}$), $2.05\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.02-2.17(2 \mathrm{H}, \mathrm{m}$, CH_{2}) , 3.19-3.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 3.84, 3.87 (2 H, A B-system,
$\mathrm{J}_{\mathrm{AB}} 12.5, \mathrm{ArCH}_{2} \mathrm{~N}$), 5.26-5.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAC}$), $5.71(1 \mathrm{H}$, ddddm, J 10.2, 2.8, 2.1, and 1.0, olefinic CH-2), $5.94(1 \mathrm{H}$, ddddm, J 10.2, 2.8, 1.7, and 1.0, olefinic CH-3), $6.66(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}$ 7.8, ArH-3), 6.68 (1 H , ddd, J 7.4, 7.4 and 1.2, ArH-5), 7.02 (1 $\mathrm{H}, \mathrm{ddm}, \mathrm{J} 7.4$ and 1.6, ArH -6), 7.09 (1 H , ddd, J 7.8, 7.4 and 1.6, ArH-4); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 15\right.$ peaks) $21.3\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]$, $26.9\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 27.4\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 50.0\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 52.0$ (CHN), $69.0(\mathrm{CHOH}), 115.7$ ($\mathrm{Ar}, \mathrm{CH}-3$), 117.7 ($\mathrm{Ar}, \mathrm{CH}-5$), 123.8 (Ar, C-1), 127.6 (olefinic CH-2), 128.4 (Ar, CH-4), 129.7 (Ar, CH-6), 134.0 (olefinic CH-3), 146.9 [$\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right.$)-2], 170.6 (C=O); m/z $283\left([\mathrm{M}+\mathrm{Na}]^{+}, 4 \%\right), 262\left([\mathrm{M}+2 \mathrm{H}]^{+}, 9\right), 261([\mathrm{M}$ + H] ${ }^{+}, 53$), 107 (9), 106 (100).

(1S,4S)-(-)-trans-1-A cetoxy-4-(2-aminobenzylamino)cyclohex-2-ene (1S,4S)-(-)-13a

The same procedure as for the preparation of (\pm)-13a but with allylic substrate ($15,4 \mathrm{~S})-(-)$-12. Spectral data were in accordance with those for (\pm)-13a; $[a]_{D}^{25}-145$ (c 1.59 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ee $\geqslant 98 \%$.

(1R , 4R)-(+)-trans-1-A cetoxy-4-(2-aminobenzylamino)-cyclohex-2-ene (1R,4R)-(+)-13a

The same procedure as for the preparation of (\pm)-13a but with allylic substrate (1R,4R)-(+)-12. Spectral data were in accordance with those for (\pm)-13a; $[a]_{D}^{25}+143$ (c 0.98 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ee $\geqslant 98 \%$.

(\pm)-trans-4-(2-A minobenzylamino)cyclohex-2-enol 4a

The hydrolysis of the acetate in 13a was performed as described for 3a; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 1.31-1.54 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.04-2.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.16-3.25 (1 H, m, CHN), 3.83, 3.86 (2 H, ABsystem, J ${ }_{\text {AB }}$ 12.4, $\mathrm{ArCH}_{2} \mathrm{~N}$), 4.19-4.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 5.75 (1 H , dddd, J 10.1, 2.4, 2.0 and 1.0, olefinic CH-2), 5.82 (1 H , dddd, J 10.1, 2.5, 1.6 and 1.0, olefinic CH-3), 6.65 (1 H , ddd, J 7.8, 1.2 and 0.4, ArH-3), 6.69 (1 H , ddd, J 7.4, 7.4 and 1.2, ArH-5), 7.02 ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 7.4$ and 1.6, ArH-6), 7.09 (1 H , ddd, J $7.8,7.4$ and 1.6, $\mathrm{ArH}-4)$; $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{H} \mathrm{z;} \mathrm{CDCl} 3,13$ peaks) 27.9 $\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 52.5(\mathrm{CHN}), 66.6(\mathrm{CHOH})$, 115.8 (Ar, CH-3), 117.8 (Ar, CH-5), 123.9 (Ar, C-1), 128.3 (Ar, CH-4), 129.7 ($\mathrm{r}, \mathrm{CH}-6$), 131.9 (olefinic CH-2), 132.0 (olefinic CH-3), $146.8\left[\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)-2\right] ; \mathrm{m} / \mathrm{z} 220\left([\mathrm{M}+2 \mathrm{H}]^{+}, 9 \%\right), 219$ ($[\mathrm{M}+\mathrm{H}]^{+}, 57$), 107 (9), 106 (100).

(1S,4S)-(-)-trans-4-(2-A minobenzylamino)cyclohex-2-enol (15,4S)-(-)-4a

See preparation of (\pm)-4a. Spectral data were in accordance with those for (\pm)-4a; $[a]_{D}^{25}-108$ (c 1.34 in EtOH); ee $\geqslant 98 \%$.

(1R ,4R)-(+)-trans-4-(2-A minobenzylamino)cyclohex-2-enol

 ($1 R, 4 R$)-(+)-4aSee preparation of (\pm)-4a. Spectral data were in accordance with those for (\pm)-4a; $[a]_{D}^{25}+110(c 1.83$ in EtOH); ee $\geqslant 98 \%$.

(\pm)-trans-1-A cetoxy-4-(2-amino-3,5-dibromobenzylamino)-cyclohex-2-ene 13b

The procedure described for the preparation of (\pm)-9a was followed. A llylic substrate (\pm)-12 ($173 \mathrm{mg}, 0.99 \mathrm{mmol}$) was reacted with $\operatorname{Pd}(\mathrm{dba})_{2}(30 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{PPh}_{3}(53 \mathrm{mg}, 0.20 \mathrm{mmol})$, $\mathrm{LiCl}(10 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 2 -amino-3,5-dibromobenzylamine ($786 \mathrm{mg}, 2.81 \mathrm{mmol}$) in THF (10 ml). The reaction mixture was stirred at room temp. for 15 h . Y ield: 284 mg (69\%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.33-1.46(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 1.47-1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.05\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]$, 2.00-2.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.10-3.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 3.82, 3.85 ($2 \mathrm{H}, \mathrm{AB}$-system, J ab $12.8, \mathrm{ArCH}_{2} \mathrm{~N}$), 5.22-5.42 (3 H , m and overlapping br s, CHOAc, ArNH 2), 5.68 (1 H , dddd, J $10.2,2.8$, 2.1 and 0.9 , olefinic CHCO), 5.85 (1 H , dddd, J 10.2, 2.7, 1.7 and 0.9 , olefinic CHCN), $7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{ArH}-6), 7.42(1 \mathrm{H}$, d, J 2.3, $\mathrm{ArH}-4)$; $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}, 15\right.$ peaks) 21.3 $\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 26.8\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 27.3\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 50.0\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$,
51.8 (CHN), 68.8 (CHO), 108.2 (A r, C(Br)-5], 110.4 (A r, C(Br)3], 126.0 (Ar, C-1), 128.2 (olefinic CH-2), 131.4 (Ar, CH-6), 133.3 ($\mathrm{Ar}, \mathrm{CH}-4$), 133.4 (olefinic $\mathrm{CH}-3$), 143.9 [$\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)$-2], $170.6(\mathrm{C}=0) ; \mathrm{m} / \mathrm{z} 422\left([\mathrm{M}+2 \mathrm{H}]^{+}, 10 \%\right), 421\left([\mathrm{M}+\mathrm{H}]^{+}, 51\right)$, 419 ([M + H] $\left.{ }^{+}, 100\right), 417\left(\left[\mathrm{M}+\mathrm{H}^{+}, 52\right), 266(20), 264(38), 262\right.$ (20), 156 (13), 139 (58), 96 (11), 64 (5).

($15,4 \mathrm{~S}$)-(-)-trans-1-A cetoxy-4-(2-amino-3,5-dibromobenzyl-amino)cyclohex-2-ene (1S,4S)-(-)-13b

The same procedure was followed as for the preparation of (\pm)13b but with allylic substrate ($15,4 \mathrm{~S}$)-(-)-12. Spectral data were in accordance with those for (\pm)-13b; $[a]_{b}^{25}-94$ (c 1.71 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ee $\geqslant 98 \%$.

(1R , 4R)-(+)-trans-1-A cetox y-4-(2-amino-3,5-dibromobenzyl-amino)cyclohex-2-ene (1R,4R)-(+)-13b

The same procedure was followed as for the preparation of (\pm)13b but with allylic substrate (1R,4R)-(+)-12. Spectral data were in accordance with those for (\pm)-13b; $[a]_{\mathrm{D}}^{25}+95$ (c 1.23 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ee $\geqslant 98 \%$.

(\pm)-trans-4-(2-A mino-3,5-dibromobenzylamino)cyclohex-2-enol

 4bThe hydrolysis of the acetate in 13b was performed as described for 3a; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 1.24-1.57\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{NH}, \mathrm{OH}\right)$, 2.02-2.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.13-3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$), 3.82, 3.84 ($2 \mathrm{H}, \mathrm{A}$ - -system, J $\mathrm{J}_{\text {Ab }} 12.8, \mathrm{ArCH}_{2} \mathrm{~N}$), $4.20-4.30(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 5.34(2 \mathrm{H}$, br s, ArN H 2), 5.76-5.83 ($2 \mathrm{H}, \mathrm{m}$, olefinic), 7.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2$, ArH-6), 7.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2, \mathrm{ArH}-4$); $\delta_{\mathrm{c}}(100.6$ $\mathrm{MHz;} \mathrm{CDCl} 3,13$ peaks) $27.8\left(\mathrm{CH}_{2}\right)$, $31.1\left(\mathrm{CH}_{2}\right), 50.0$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 52.3(\mathrm{CHN}), 66.6(\mathrm{CHOH}), 108.3[\mathrm{Ar}, \mathrm{C}(\mathrm{Br})-5]$, 110.4 [$\mathrm{Ar}, \mathrm{C}(\mathrm{Br})-3$], 126.2 ($\mathrm{Ar}, \mathrm{C}-1$), 131.4 ($\mathrm{Ar}, \mathrm{CH}-6$), 131.6 (olefinic), 132.4 (olefinic), 133.3 (Ar, CH-4), 143.9 [Ar, C(NH_{2})2]; m/z $380\left([\mathrm{M}+2 \mathrm{H}]^{+}, 8 \%\right), 379\left([\mathrm{M}+\mathrm{H}]^{+}, 51\right), 377([\mathrm{M}+$ H], 100), 375 ([M + H] ${ }^{+}, 50$), 266 (12), 264 (25), 262 (13), 82 (30), 64 (30).

(1S,4S)-(-)-trans-4-(2-A mino-3,5-dibromobenzylamino)-cyclohex-2-enol (1S,4S)-(-)-4b

See preparation of (\pm)-4b; $[\alpha]_{\mathrm{D}}^{25}-65$ (c 2.23 in EtOH) ee $\geqslant 98 \%$.
(1R ,4R)-(+)-trans-4-(2-A mino-3,5-dibromobenzylamino)-cyclohex-2-enol (1R,4R)-(+)-4b
See preparation of (\pm)-4b; $[a]_{D}^{25}+66$ (c 1.11 in EtOH); ee $\geqslant 98 \%$.

trans-4-(2-A minobenzylamino)cyclohexanol trans-2a

The synthesis of trans-2a was performed in accordance with the preparation of the the cis-analogue (\pm)-4a ($92 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{PtO}_{2}(7 \mathrm{mg}, 0.031 \mathrm{mmol})$ and 1 atm of H_{2}, in EtOH (10 ml) at room temp. for 15 min gave the title compound ($75 \mathrm{mg}, 80 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 1.07-1.22 (2 H, m, CH 2 Cax CH), 1.23$1.39\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \mathrm{ax}} \mathrm{CHO}\right), 1.58-1.77\left(1 \mathrm{H}, \mathrm{m}_{2} \mathrm{CH}_{2}\right), 1.91-2.09$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{OH}, \mathrm{NH}\right), 2.49(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 10.7$ and $3.7, \mathrm{CHN}$), $3.61(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 10.5$ and $4.1, \mathrm{CHOH}), 3.80\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArCH}{ }_{2} \mathrm{~N}\right)$, 6.65 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.9$ and 1.2, ArH -3), 6.68 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.4,7.4$ and 1.2, A rH-5), 7.02 ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 7.4$ and 1.6, ArH-6), 7.08 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.8,7.4$ and $1.6, \mathrm{ArH}-4$), OH and NH as well as $\mathrm{ArNH} \mathrm{H}_{2}$ give very broad signals in the regions 0.8-2.2 and 4.05.3 ppm respectively; $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz}^{\left(\mathrm{CDCl}_{3}, 11 \text { peaks) } 31.2 ~\right.}\right.$ $\left(\mathrm{CH}_{2}-3\right), 33.9\left(\mathrm{CH}_{2}-2\right), 50.5\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.7(\mathrm{CHN}), 70.4$ (CHOH), 115.7 ($\mathrm{Ar}, \mathrm{CH}-3$), 117.8 ($\mathrm{Ar}, \mathrm{CH}-5$), 124.5 ($\mathrm{Ar}, \mathrm{C}-1$), 128.2 (Ar, CH-4), 129.6 (Ar, CH-6), 146.7 [Ar, C(NH_{2})-2]; m/z $222\left([\mathrm{M}+2 \mathrm{H}]^{+}, 14 \%\right), 221\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 106(39), 82(53)$.

trans-4-(2-A mino-3,5-dibromobenzylamino)cyclohexanol trans-

 2b (ambroxol)The synthesis of trans- $\mathbf{2 b}$ was performed in accordance with the preparation of cis-2a. (\pm)-4b ($85 \mathrm{mg}, 0.23 \mathrm{mmol}$), $\mathrm{PtO}_{2}(2 \mathrm{mg}$,
0.009 mmol) and 1 atm of H_{2} in EtOH (10 ml) at room temp. for 75 min gave the title compound ($77 \mathrm{mg}, 90 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.07-1.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.23-1.53 ($5 \mathrm{H}, \mathrm{br} \mathrm{s}$ and m , $\mathrm{OH}, \mathrm{NH}, \mathrm{CH}_{2}$), 1.54-1.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.91-2.10 ($4 \mathrm{H}, \mathrm{m}$, CH_{2}), $2.46(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 10.6$ and $3.5, \mathrm{CH}$) $) 3.62(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 10.5$ and $4.0, \mathrm{CHOH}), 3.78\left(2 \mathrm{H}, \mathrm{br}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 5.34(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, ArNH 2), 7.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{ArH}-6$), 7.47 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{ArH}-4$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}, 11\right.$ peaks) $31.2\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 50.6$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 55.4(\mathrm{CHN}), 70.3(\mathrm{CHOH}), 108.2$ [$\left.\mathrm{Ar}, \mathrm{C}(\mathrm{Br})-5\right]$, 110.4 [A r, C (Br)-3], 126.8 (Ar, C-1), 131.2 (Ar, CH-6), 133.2 (Ar, CH-4), $143.9\left[\mathrm{Ar}, \mathrm{C}\left(\mathrm{NH}_{2}\right)-2\right] ; \mathrm{m} / \mathrm{z} 382\left([\mathrm{M}+2 \mathrm{H}]^{+}, 8 \%\right)$, $381\left([\mathrm{M}+\mathrm{H}]^{+}, 38\right), 379\left([\mathrm{M}+\mathrm{H}]^{+}, 75\right), 377\left([\mathrm{M}+\mathrm{H}]^{+}, 39\right)$, 266 (48), 264 (100), 262 (45), 116 (37).

A cknowledgements

Financial support from the Swedish N atural Science Research Council and the Swedish Research Council for Engineering Sciences are gratefully acknowledged. M s Benita Hyllbrant is greatly acknowledged for assistance with the mass analyses.

R eferences

1 (a) H. K och, Drugs Today, 1979, 15, 523; (b) G. Caramia, R. Gagliardini, E. Ruffini, P. Osimani and A. N obilini, J. Int. M ed. Res., 1995, 23, 284; (c) W. Kuckelt, R. Dauberschmidt, J. Scharfenberg, K. W insel, B. Lachmann, H. Frenzke, U. H ieronymi, H. M rochen and M . M eyer, Respiration, 1980, 39, 264

2 M . Bianchi, A . M antovani, A . Erroi, C. A . D inarello and P. G hezzi, A gents A ctions 1990, 31, 275 and references cited therein
3 In cooperation with: T. Eriksson, C. M. A ndersson, H. Bergstrand, K. K arabelas and P. Sjö at the D epartment of M edicinal Chemistry, A stra D raco A B, PO Box 34, S-221 00 L und, Sweden.
4 (a) K. Ramesh, M. S. Wolfe, Y. Lee, D. Vander Velde and R. T. Borchardt, J. Org. Chem., 1992, 57, 5861; (b) N. D yatkina, B. Costisella, F. Theil and M. von Janta-Lipinski, Tetrahedron Lett., 1994, 35, 1961; (c) N. B. Dyatkina, F. Theil and M. von JantaLipinski, Tetrahedron, 1995, 51, 761.
5 (a) S. K napp, A . B. J. N aughton and T. G. M urali D har, Tetrahedron Lett., 1992, 33, 1025; (b) T. H udlicky and H. F. Olivo, Tetrahedron Lett., 1991, 32, 6077.
6 R. G. P. Gatti, A. L. E. Larsson and J. E. Bäckvall, J. Chem. Soc., Perkin Trans. 1, 1997, 577.
7 For related work on enantioselective synthesis of 4-amino-cyclohex-2-enols see: B. M . Trost and S. R. Pulley, J. A m. Chem. Soc., 1995, 117, 10 143; B. M . Trost, P ure A ppl. Chem., 1996, 68, 779.

8 J. E. Bäckvall, R . G atti and H. E. Schink, Synthesis, 1993, 343.
9 R. J. K azlauskas, A. N. E. Weissfloch, A. T. Rappaport and L. A. Cuccia, J. Org. Chem., 1991, 56, 2656.
10 J. E. Bäckvall, S. E. Byström and S. E. N ordberg, J. Org. Chem., 1984, 49, 4619.
11 (a) J. E. Bäckvall, J. E. N yström and S. E. N ordberg, J. A m. Chem. Soc., 1985, 107, 3676; (b) J. V ågberg and J. E. Bäckvall, Org. Synth., 1990, 69, 38
12 (a) J. E. Bäckvall, in A dvances in M etal-O rganic Chemistry, ed. L. S. L iebeskind, JAI press, G reenwich, CT, 1989, vol. 1, pp. 135-175; (b) J. E. Bäckvall, Palladium-Catalyzed 1,4-A dditions to Conjugated Dienes, a review in ' M etal-catalyzed Cross Coupling Reactions', ed. P. Stang and F. Diederich, VCH, Weinham, in the press; (c) P. G. A ndersson and J. E. Bäckvall, in Advances in N atural Product Synthesis, ed. W. Pearson, JAI Press, 1996; (d) H. E. Schink, H. Pettersson and J. E. Bäckvall, J. Org. Chem., 1991, 56, 2769; (e) D. Tanner, M. Sellén and J. E. Bäckvall, J. Org. Chem., 1989, 54, 3374.
13 T. U kai, H. K awazura, Y. Ishii, J. J. Bonnet and J. A. Ibers, Organomet. C hem., 1974, 65, 253.

Paper 7/02141K
R eceived 27th M arch 1997
A ccepted 10th J une 1997

